Orange protein has a role in phytoene synthase stabilization in sweetpotato

نویسندگان

  • Seyeon Park
  • Ho Soo Kim
  • Young Jun Jung
  • Sun Ha Kim
  • Chang Yoon Ji
  • Zhi Wang
  • Jae Cheol Jeong
  • Haeng-Soon Lee
  • Sang Yeol Lee
  • Sang-Soo Kwak
چکیده

Carotenoids have essential roles in light-harvesting processes and protecting the photosynthetic machinery from photo-oxidative damage. Phytoene synthase (PSY) and Orange (Or) are key plant proteins for carotenoid biosynthesis and accumulation. We previously isolated the sweetpotato (Ipomoea batatas) Or gene (IbOr), which is involved in carotenoid accumulation and salt stress tolerance. The molecular mechanism underlying IbOr regulation of carotenoid accumulation was unknown. Here, we show that IbOr has an essential role in regulating IbPSY stability via its holdase chaperone activity both in vitro and in vivo. This protection results in carotenoid accumulation and abiotic stress tolerance. IbOr transcript levels increase in sweetpotato stem, root, and calli after exposure to heat stress. IbOr is localized in the nucleus and chloroplasts, but interacts with IbPSY only in chloroplasts. After exposure to heat stress, IbOr predominantly localizes in chloroplasts. IbOr overexpression in transgenic sweetpotato and Arabidopsis conferred enhanced tolerance to heat and oxidative stress. These results indicate that IbOr holdase chaperone activity protects IbPSY stability, which leads to carotenoid accumulation, and confers enhanced heat and oxidative stress tolerance in plants. This study provides evidence that IbOr functions as a molecular chaperone, and suggests a novel mechanism regulating carotenoid accumulation and stress tolerance in plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carotene Hydroxylase Activity Determines the Levels of Both α-Carotene and Total Carotenoids in Orange Carrots.

The typically intense carotenoid accumulation in cultivated orange-rooted carrots (Daucus carota) is determined by a high protein abundance of the rate-limiting enzyme for carotenoid biosynthesis, phytoene synthase (PSY), as compared with white-rooted cultivars. However, in contrast to other carotenoid accumulating systems, orange carrots are characterized by unusually high levels of α-carotene...

متن کامل

Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato.

Sweetpotato (Ipomoea batatas Lam.) is an important industrial crop and source of food that contains useful components, including antioxidants such as carotenoids. β-Carotene hydroxylase (CHY-β) is a key regulatory enzyme in the beta-beta-branch of carotenoid biosynthesis and it catalyzes hydroxylation into both β-carotene to β-cryptoxanthin and β-cryptoxanthin to zeaxanthin. To increase the β-c...

متن کامل

Carotenoid Crystal Formation in Arabidopsis and Carrot Roots Caused by Increased Phytoene Synthase Protein Levels

BACKGROUND As the first pathway-specific enzyme in carotenoid biosynthesis, phytoene synthase (PSY) is a prime regulatory target. This includes a number of biotechnological approaches that have successfully increased the carotenoid content in agronomically relevant non-green plant tissues through tissue-specific PSY overexpression. We investigated the differential effects of constitutive AtPSY ...

متن کامل

Transcript levels of phytoene desaturase gene in Dunaliella salina Teod. as affected by PbS nanoparticles and light intensity

Phytoene synthase (Psy) and Phytoene desaturase (Pds) are the first two regulatory enzymes in the carotenoids biosynthetic pathway. The genes Psy and Pds are under transcriptional control in many photosynthetic organisms. In the present study, using quantitative real time- PCR (qRT-PCR), the effects of uncoated and gum-Arabic coated PbS nanoparticles (GA-coated PbS NPs) and light intensity on t...

متن کامل

Cloning and characterization of an Orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures.

The Orange (Or) gene is responsible for the accumulation of carotenoids in plants. We isolated the Or gene (IbOr) from storage roots of orange-fleshed sweetpotato (Ipomoea batatas L. Lam. cv. Sinhwangmi), and analyzed its function in transgenic sweetpotato calli. The IbOr gene has an open reading frame in the 942 bp cDNA, which encodes a 313-amino acid protein containing a cysteine-rich zinc fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016